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Abstract

Purpose of Review Describe the rationale for preconditioning MSCs prior to use as therapy and the state-of-the-art of using
preconditioning of MSCs in clinical settings.

Recent Findings Mounting preclinical data supports preconditioning of mesenchymal stromal cells (MSCs) to enhance their
therapeutic efficacy. Most research has focused on cytokine priming and hypoxic preconditioning, while other approaches,
such as glycoengineering, remain relatively understudied. Despite strong preclinical data, clinical evidence supporting pre-
conditioning strategies are limited to six Phase I clinical trials (most of them in progress).

Summary Here, we succinctly discuss the rationale for preconditioning using cytokines, hypoxia, and glycoengineering, while
elaborating on the respective clinical experiences. Overall, we note that preconditioning is highly dependent on the desired
application, and therefore requires elucidating the mechanism of action of the MSCs used for therapy. Preconditioning may
also help mitigate heterogeneity of MSC lots. Based on the remarkable safety profile of MSCs, even when used in allogeneic
settings, the role of preconditioning prior to their final formulation might be the key to reach expected therapeutic outcomes.
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Introduction

Over one thousand clinical trials have demonstrated that
administration of mesenchymal stem cells/multipotent stromal
cells (MSCs) can be safe, but only a few trials have reached
the expected therapeutic efficacy [1-3]. Factors likely limiting
clinical efficacy include insufficient cell potency (primarily
paracrine activity), not fully elucidated mechanisms of action
of the cells, low efficiency to reach target tissues, low retention
due to poor cell survival, and inadequate patient selection [1,
4]. In this review, we briefly discuss strategies that may help
mitigate some of these limitations while not risking the good
safety profile of the cells.

Important decisions for clinical success include, cell
source, infusion of fresh vs. cryopreserved cells [5-7],
clinical dose and dosage, route of administration, and final
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formulation. This review will focus on preconditioning strate-
gies, referring to treatments on the MSCs performed within a
few days or hours prior to final product formulation. There-
fore, this review will not cover approaches such as genetic
engineering, combination products of MSCs with other cell
types, devices, or biomaterials, bioprinting, or long-term cul-
ture of MSCs in spheroids or special bioreactors. Importantly,
the optimal preconditioning strategy depends on the intended
application. All preconditioning strategies discussed here are
transient. Also, most of the preconditioning strategies listed
below can be used individually or in combination, a notion
that needs to be evaluated on a case-by-case basis.

Cytokine Priming

One of the first avenues explored to modulate MSC activity
was cytokine priming, which is primarily used to enhance the
immunomodulatory capacity of MSCs [7, 9]. Through the
introduction of pro-inflammatory cytokines (IFNy, TNF-a,
IL-17, IL-18, IL-1b, MCP-1) in vitro, MSCs can be activated
to exhibit a stronger response after infusion into patients [8, 9].
Cytokine priming aims to mimic microenvironmental stimuli
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in vivo, where a single or cocktail of cytokines induces the
expression of immunomodulatory signals such as the secre-
tion of IDO, PGE2, TGF-b, MCP-1, and HGF [9]. Extensive
studies have been conducted utilizing cytokine priming on
MSC:s to assess the immunomodulatory effects and involved
mechanisms (see reviews [11-14]). These results suggest that
cytokine priming have therapeutic potential by enhancing the
immunomodulatory properties of MSCs, although the num-
ber of in vitro studies far outweighs in vivo studies in animal
models. Cytokine priming strategies that have been utilized to
test efficacy within in vivo models are summarized in Table 1.

The most common cytokine priming tested to enhance the
immunomodulatory capabilities of MSCs is interferon gamma
(IFN-y). Human MSCs primed with IFN-y significantly
improved the survival of mice modeling graft-versus-host dis-
ease (GVHD) [15, 16]. Preconditioning with IFN-y has also
been reported to improve microvascular hemodynamics within a
murine model of sepsis, by reducing the adhesion of white blood
cells to venules [17]. Various groups have tested the safety of
preconditioning human MSCs with IFN-y [18, 19]. Such safety
studies are pending for other cytokine-priming strategies. Of
note, IFN-y may cause upregulation of class I and class Il HLA
expression [20], therefore increasing the immunogenicity of
MSCs and subsequently a faster clearing of the cells.

When developing a potential MSC based therapy, it
is important to consider the heterogeneity of MSCs, and
differences among lots due to donor-to-donor variations.
Interestingly, when stimulated with either IFN-y or TNF-a,
MSCs derived from different donors exhibit a more similar
immune suppressive potential both in vitro and in vivo
[21], suggesting that cytokine priming may also be useful
to reduce variations among lots of MSCs.

Tumor necrosis factor alpha (TNF-o) is another common
pro-inflammatory cytokine used to prime MSCs. However,
the intended increase in immunomodulatory function may

depend on the tissue source (e.g., umbilical cord vs. bone
marrow) of MSCs [22]. Rat bone marrow-derived MSCs
(BM-MSCs) preconditioned with TNF-a implanted into rat
Achilles tendon segmental defects depicted modest regen-
erative potential [23]. However, it was noted that MSCs
primed with TNF-a showed a reduction in IL-12 and M1
macrophages and an increase in IL-4 and M2 macrophages,
suggesting that priming of MSCs with TNF-a may enhance
the ability to modulate macrophage polarization.

Priming of MSCs with TNF-a has also been combined
with Interleukin 1 beta (IL-1p) to prevent immune-mediated
rejection seen with corneal transplantation (keratoplasty)
[24]. Using a rat model of orthotopic corneal transplantation
followed by intravenously administered MSCs, Murphy et al.
showed that the corneal allograft had better survival when
using the TNF-a/IL-1b-preconditioned MSCs, which was
attributed to an increase of regulatory T cells and a decrease
of inflammatory cytokines within draining lymph nodes.
Surprisingly, corneal immune rejection after keratoplasty
has also been improved by preconditioning MSCs with
transforming growth factor beta 1 (TGF-f1) [25], a cytokine
that primarily inhibits inflammation. Mice treated with TGF-
B1-primed MSCs showed less corneal neovascularization
and superior opacity score, suggesting that priming MSCs
with TGF-B1 may also prevent immune-mediated rejection
of corneal allografts.

Because pneumonia causes a strong increase of the pro-
inflammatory cytokine IL-18, Liao et al. tested if prim-
ing umbilical cord-derived MSCs (UC-MSCs) with IL-18
would reduce acute lung injury in a murine model of HIN1
influenza virus-induced severe pneumonia [10]. As com-
pared to controls, UC-MSCs primed with IL-18 showed
enhanced immunosuppressive properties and significantly
reduced systemic IFN-g and IL-1b levels. Monocyte Che-
moattractant Protein 1 (MCP-1) is a chemokine involved in

Table 1 Summary of

. ‘ Preconditioning Time Source Rationale Reference
preclinical studies to enhance
MSC function through IFN-¢g 1-2days ~ hBM, hAT, Immune function [15-17]
preconditioning strategies. hUC, WJ
Only studies using in vivo .
experiments to test MSCs were TNF-a 1 day rBM Immune function [23]
considered in the compilation TNF-a+IL1B 3 days rBM Immune function [24]
of the table. ABM human bone TGF-B1 3 days mBM Immune function [25]
maiirol‘z)v’ hi{c hum:;n umbilical IL-18 1 day hUC Immune function [10]
cord, hAT human adipose tissue, .
AUC human umbilical cord, MCP-1 2 days hBM Immune function [26]
rBM rat bone marrow, mBM FUT6 + GDP-fucose 40 min hBM Osteotropism [30, 32]
mouse bone marrow FGF2 1 day hBM Increase cell motility [33]
Biotinylated 30 min hBM Increase homing to inflammation [34]
sialyl-lewis(X)-
poly(acrylamide)
Kifunensine 1 day BM Increased cell motility [36]
Hypoxia 2 days BM Increased angiogenic factors and [42, 44-47]
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Fig.1 Summary of preconditioning strategies for MSCs in both
preclinical and clinical trials. The clinical efficacy of MSCs can be
enhanced through various preconditioning strategies that alter its bio-
logical properties. Cytokine priming can enhance the immunosup-
pressive capabilities of MSCs, which may be useful for immunomod-

inflammation that attracts monocytes and basophils. MCP-1
is highly upregulated in a mouse model of contact hyper-
sensitivity [26]. In this model, Liu et al. demonstrated that
injecting human MSCs primed with MCP-1 intravenously
reduced ear swelling in part by decreasing proinflammatory
cytokines (IFN-g, TNF-a, IL-6), while increasing the anti-
inflammatory cytokine IL-10. Mechanistically, it was sug-
gested that priming with MCP-1 activates STAT3 signaling,
inducing expression of cyclooxygenase-2 (COX2), leading to
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ulation and graft survival. Hypoxia preconditioning reduces glucose
consumption and promotes retention and secretion of angiogenic
factors. Glycoengineering can promote selectin binding and increase
trafficking and migration of MSCs to the bone and/or inflamed tissues

increased PGE2. These two studies serve as examples for the
value of understanding the molecular signature of a disease
to educate the optimal preconditioning strategy for MSCs.

Altogether, a large body of preclinical work supports
cytokine priming as a preconditioning strategy for MSCs
(Table 1) aiming to increase the immunomodulatory function
of the cells. However, clinical use of such preconditioning
remains limited to only a few trials (Table 2).

Table 2 Summary of clinical trials using MSCs with preconditioning strategies. Status of clinical trial as of July 2023. UC umbilical cord, BM

bone marrow

Preconditioning Indication Cell source Status of trial Clinical trial
no
IFN-g Asthma Allogeneic UC Recruiting NCT05035862
IFN-g Acute graft vs host disease Allogeneic BM Recruiting NCT04328714
IFN-g Xerostomia post radiation therapy Autologous BM Active, not recruiting NCT04489732
Fucosylation Osteoporosis Autologous BM Completed NCT02566655
Hypoxia Severe COVID-19 UC-MSC-derived Recruiting NCT04753476
secretome

Hypoxia Critical limb ischemia Allogeneic BM Completed NCT02336646
Hypoxia Pulmonary emphysema Allogeneic BM Withdrawn NCTO01849159

@ Springer



Current Stem Cell Reports

Glycoengineering

Glycoengineering is the process by which glycosylation, especially
of proteins, is modulated to alter the biological properties of
cells. By taking advantage of the natural glycosylation pathway,
this preconditioning approach can be safe and reversible
with the distinct advantage of avoiding genetic manipulation.
Glycoengineering strategies in other fields have been previously
reviewed [27-29]. In pioneering work, Sackstein et al. showed that
specific glycoengineering of hMSCs enhances its homing to the
bone [30]. Hematopoietic stem/progenitor cells home efficiently
to bone marrow in part by expressing a unique glycoform of
CD44, which contains a terminal tetrasaccharide sialyl Lewis X
(sLeX) motif [31]. MSCs do not express this unique glycoform.
Rather, MSCs express high levels of sialylated CD44 without
the characteristic antennary fucosylations of sLeX motifs. To
induce such fucosylations, MSCs in a confluent layer or in
suspension can be incubated for 40 min with fucosyltransferase
6 (FUT6) and GDP-fucose. These glycoengineered MSCs show
enhanced E-selectin binding and rolling behavior under shear
stress conditions. Most importantly, when injected intravenously
into mice, glycoengineered MSCs show enhanced homing to the
calvarium (and possibly other bones), although the total number
of homed cells remains low. Noteworthy, the injected cells
colocalized with human osteocalcin staining, suggesting that the
injected MSCs were contributing to new bone formation through
direct differentiation into osteoblasts. This glycoengineering
approach may greatly improve the therapeutic outcome of MSCs
used to promote bone repair.

In a small clinical trial (Table 2), 10 female patients with
advanced osteoporosis were treated with autologous exo-
fucosylated MSCs (2-6x 10° cells/kg body weight). After
a median follow-up of 3 months, patients reported no new
osteoporotic fractures and an overall decrease in pain score
[32]. We have shown that FGF2 increases the motility of MSCs
in part by upregulating fucosyltransferase 8 (FUT8), which
transfers core fucosylations to N-glycans. In turn, silencing
FUTS impairs the recruitment of MSCs into the bone callus
during fracture repair [33]. Therefore, both antennary and core
fucosylations are likely critical to the osteotropism of MSCs.

Sarkar et al. showed that conjugating a sLeX-
polyacrylamide-biotin to the surface of MSCs increases
the recruitment of MSCs to sites of inflammation [34].
Zheng et al. recently demonstrated that the sLeX motif can
be glycoengineered onto CD63, a common biomarker for
extracellular vesicles (EV). These CD63 + MSC-EVs showed
increased uptake by endothelial cells both in vitro and in vivo
[35]. Therefore, glycoengineering may not only improve the
delivery of MSCs to target sites but also improve the delivery
of MSC-derived EVs.

Kifunensine, a small molecule that inhibits Mannosidase I,
causes a strong enrichment of high-mannose N-glycans [36].
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We have shown that preconditioning MSCs with Kifunensine
promotes cell motility in vitro and in vivo towards a bone
fracture, when injected intramuscularly into immune deficient
mice [37]. Importantly, glycoengineering with either small
molecules or incubation with enzymes and sugars are transient
effect that last for 4-6 days, depending on protein turnover.

Overall, glycoengineering is a promising approach
to enhance MSCs’ efficacy, especially by improving the
delivery of cells to specific sites.

Hypoxic Preconditioning

Preconditioning of MSCs in hypoxia has been extensively
reviewed [9, 14, 38, 39]. The in vivo counterpart to MSCs
(pericytes, adventitial stromal cells, etc.) resides in low-oxygen
environments. For example, bone marrow has levels of 1 to
7% oxygen, while the umbilical cord has oxygen levels around
5%. However, MSCs are typically cultured under “normoxic”
conditions (20.9%). This high oxygen level may damage DNA
and cause cellular senescence due to oxidative stress [40, 41].
Conversely, hypoxia-preconditioned MSCs show increased
differentiation potential, reduced telomeric shortening, and
decreased cellular senescence. Hypoxic preconditioning inhibits
the expression of p/6 which in turn reduces ROS-associated
stress of MSCs, decreasing cellular senescence.

Hypoxic preconditioning also increases immunomodula-
tory factors such as, HLA-G, PGE- 2, and IDO [9]. Huang
et al. showed that hypoxic preconditioning promotes anti-
inflammatory and immunomodulatory properties that are
retained after injected in a mouse model [42]. They showed
that hypoxic preconditioning of MSCs reduces the accu-
mulation of host natural killer (NK) cells in ischemic tis-
sue. MSCs cultured in normoxia would be lysed by NK
cells but cells preconditioned in hypoxia were able to evade
NK cell lysis. Hypoxia also promotes secretion of IL-6, a
regulator of dendritic cell differentiation and function [41].
Hypoxia increases p21 which in turn reduces tumor potential
in ischemic tissues. A safety assessment was conducted by
Tsai et al. who showed that MSCs preconditioned in hypoxia
keep their genetic integrity and develop no tumors in a mouse
model [43].

We and others have shown that hypoxic preconditioning
of MSCs also increases proangiogenic signals and enhances
cell retention after transplantation into immune-deficient mice
[44-47]. The increased survival is most likely driven by reducing
the metabolic requirements of the cells and therefore adapting
better to the injection site. This improved retention has likely
therapeutic implications, since it has been shown that hypoxic
preconditioning of MSCs show increased viability and enhanced
angiogenic potential in animal models of critical limb ischemia/
peripheral artery disease [48, 49].
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A clinical trial conducted in Indonesia showed that
conditioned media derived from hypoxic-preconditioned
MSCs improved pulmonary function after damage from
COVID-19 [50] by normalizing levels of neutrophils,
monocytes and lymphocytes. Of note, the secretome of
hypoxic-preconditioned MSCs showed high expression of
angiogenic growth factors (VEGF and PDGF) and anti-
inflammatory cytokines (IL-10 and TGF-b).

Various clinical trials have used hypoxic-preconditioned
MSCs (Table 1), suggesting that pretreatment of MSCs
in hypoxia does not jeopardize the good safety profile of
the cells. However, to the best of our knowledge, these
studies did not include an arm of MSCs without hypoxic
preconditioning, hence challenging our understanding of
the clinical benefit of this type of preconditioning.

Conclusion

There is a large body of literature supporting
preconditioning strategies for MSCs. They are expected to
not alter the good safety profile of the cells but enhance their
therapeutic efficacy by transiently exacerbating specific
cellular functions. However, clinical uses of preconditioned
MSC:s are still in the very early phases. The results of such
clinical trials will be instrumental to further support these
pre-formulation approaches for MSC-based therapies.
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